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Abstract: Previous research has shown multihue scales to
be well-suited to code categorical features and shown
lightness scales to be well-suited to code ordinal quanti-
ties. We introduce an algorithm, Motley, that produces
color scales varying in both hue and lightness, intended
to be effective for both categorical and ordinal coding,
allowing users to determine both absolute and relative
quantities efficiently and accurately. The algorithm first
determines the lightnesses of scale colors to maximize
perceived lightness differences and establish the lightness
ordering, generating separate search spaces for each
scale position. It then selects hues by heuristic search to
maximize the discriminability of the scale. It produces
scales that are ordered with respect to lightness but unor-
dered with respect to hue and thus more discriminable
than typical multihue lightness scales. In an experimental
evaluation on human subjects, Motley’s scales enabled
accurate judgments of relative quantity, with response
times superior to unordered multihue scales and compara-
ble to ordered lightness scales, and enabled accuracy and
speed of judgments of absolute quantity superior to light-
ness scales and comparable to multihue scales. yPublished

2009 Wiley Periodicals, Inc. Col Res Appl, 35, 18 – 28, 2010; Published

online 17 November 2009 in Wiley InterScience (www.interscience.

wiley.com). DOI 10.1002/col.20559
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INTRODUCTION

Color scales and lightness scales are commonly used to

code graphic visualizations used in meteorology, cartogra-

phy, radiology, economics, and other applications. Multi-

colored scales are effective in coding categorical fea-

tures,1 as are ordered lightness scales in coding ordinal

quantities.2 In certain applications it would be desirable to

use a scale that was effective for both categorical and or-

dinal coding, for example, to be able to make both rela-

tive comparisons between the temperatures of two regions

on a map, as well as to determine the temperature of a

single region.3 Unfortunately, there is evidence that multi-

colored scales are not well-suited for ordinal coding and

lightness scales are not well-suited for categorical cod-

ing.4–6 This has been explained in terms of multicolored

scales lacking adequate ordering cues and lightness scales

lacking adequate discriminability.6 Figure 1 gives exam-

ples of multicolored scales (Rainbow and Weather) and

lightness scales [Grayscale and HSB (hue-saturation-

brightness)].

The goal of this research is to begin to determine the

requirements of a scale that can be used effectively for

both categorical and ordinal coding, allowing users to

make both absolute and relative quantitative judgments.

The possibility of making a dual-use multicolored light-

ness scale is suggested by evidence that color variation

need not interfere with lightness coding,2,7,8 nor lightness

variation with color coding.7,9

The desirability of providing dual-use functionality of

this sort is apparent upon reflection on the tasks per-

formed using a display coded by an ordinal scale. Nor-

mally, one would like to make relative quantitative judg-

ments easily using the display, such as binary compari-

sons (which of these two locations is warmer?), maxima/

minima (which location is coldest?), and spatial trends

(temperatures get hotter as one goes south). However, one
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would also like to identify reliably and rapidly the abso-

lute value of a particular display location, by matching its

color to the legend. Such values may be specific numbers,

but more often are ranges (e.g., 208–308) or ordinal cate-
gories (e.g., ‘‘somewhat agree’’). To support such identifi-

cations, the ordinal scale would also need to have the dis-

criminability of a categorical scale.

Unfortunately, the choice of a color scale to support

both relative comparison and absolute value identification

typically entails compromises. For example, in research

on the representation of altitude in school atlases, Phil-

lips6 concluded that although lightness scales produced

lower accuracies than multicolored scales for judging

absolute heights, lightness scales are preferable, owing to

their superiority for relative height judgments, ‘‘as relative

height is more important than absolute height for children

using atlases’’ (p. 1143). On the other hand, if accuracy

on both tasks is one’s primary concern, then multicolored

scales would be preferred, even though they afford less

efficient relative comparisons than lightness scales4 (see

also the research to be reported). Our goal is to produce a

dual-use scale to obviate such compromises.*

We will evaluate the hypothesized requirements of a

dual-use scale by implementing them in a computer algo-

rithm, called Motley, designed to generate multihue light-

ness scales. Other color-scale selection tools and color-

scale generation algorithms have been introduced.2,11–13

Some tools provide an interactive environment for manual

scale generation,14,15 or a task-analytic retrieval from a

database of color scales, guided by general principles sup-

ported in the literature.16,17 These will not be considered

further. Algorithms have been proposed to generate cate-

gorical scales, typically by heuristic search through a

color space.11,18 While we are aware of no algorithms for

generating ordinal scales, various systematic approaches

to generating them have been proposed. Most of these

define guidelines for tracing a curve in a color space,

along which the colors are selected.2 We are aware of no

algorithm or systematic approach for generating dual-use

scales. In general terms, our approach is to make scales

that are ordered by lightness and that are maximally dis-

criminable (within the constraints imposed on lightness as

well as saturation) in hue.

In what follows, we provide the motivations for the

various features of the Motley algorithm, describe the

algorithm, and then empirically evaluate two scales gener-

ated by Motley with human participants. In the evalua-

tion, the Motley scales will be compared to traditionally-

used lightness and multihue scales. We will attempt to

replicate previous finding4–6 with regard to the traditional

scales: that is, the finding that multihue scales are supe-

rior to lightness scales for categorical coding and that

lightness scales are superior for ordinal coding. Most

importantly, the evaluation will determine whether the

FIG. 1. Sample experimental stimuli. The printed colors necessarily differ somewhat from the colors on our monitor. Also,
the RGB values we used are likely to appear slightly differently on another monitor. PL, perceptually linear; HSB, hue-satu-
ration-brightness.

*One solution for absolute judgments is to dispense with either colors
or a legend by including numerical values directly on the display, sup-
plemented perhaps by lines, such as contour lines, isothermal lines, etc.
These are more effective than lightness coding for absolute judgments,
but add clutter to the display and are inferior to lightness codes for rela-
tive comparisons.4,10
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Motley scales are as effective as these traditional scales

on their respective dominant coding task.

ORDINAL SCALES

Lightness has been found to be particularly well-suited

for coding ordinal scales, because lightness provides a

perceptually-based ordering.2 Scales varying in saturation

are also sometimes used, but are apparently not as effec-

tive as lightness scales in representing quantity.8 How-

ever, hue does not lend itself to a perceptual ordering in

the way lightness does. Some multicolored ordinal scales,

such as ones representing the color changes undergone by

a progressively heated object, rely on a symbolic rather

than a perceptual ordering. Bipolar scales with two colors

varying in lightness or saturation are most appropriate for

scales having a central zero point.19 The most commonly

used ordered multicolor scale, the rainbow scale, suffers

from the fact that the central yellows and greens in the

scale are perceived as overly light;20,21 thus the lightness

ordering conflicts with the color ordering (See Rainbow

scale in Fig. 1). While a rainbow spectrum represents a

physical ordering of colors, it does not represent a percep-

tual ordering and, so, many experts advise against their

use for coding quantitative data in most cases.22

Based on the examination of eye movements, Breslow

et al.4 suggested how relative comparisons are performed.

They argued that quantitative comparisons are performed

on lightness-coded visualizations by means of direct com-

parisons between locations on the visualization to deter-

mine which is darker or lighter. Consequently, the legend

is often not consulted. In contrast, relative comparisons

with multicolor-coded visualizations were found to

involve the more laborious process of searching for each

color on the legend and then comparing their respective

legend values or positions. Thus, relative order is best

represented by the graded lightness of colors in the scale

and the optimization of a lightness scale should be

directed towards facilitating the direct comparison of col-

ors to determine easily which is darker/lighter, rather than

facilitating visual search for colors.

Even if colors are not as effective as lightness for rep-

resenting quantity, the question remains as to whether

color variation aides or impedes the functionality of light-

ness scales. Some researchers have found that variation in

color interferes with the lightness coding of quantity,23

while others have found color facilitates lightness cod-

ing.2,8 The answer to this question will be important for

determining whether a dual-use multicolored lightness

scale is possible.

CATEGORICAL SCALES

The opposite situation exists for categorical scales. Color

has been found to be particularly well suited to categori-

cal coding, superior to many other attributes including

lightness.1,8 Unless the code is memorized (and it’s usu-

ally not24,25) or supported by familiar symbolic relations

(e.g., blue ¼ ocean), the user of a categorical code must

look up the colors matching those in the display in an

accompanying legend, thus performing visual search.

Large perceptual differences among the colors have been

found to be critical to efficient visual search for col-

ors.26,27 Indeed, in some conditions, increased color dif-

ferences enable people to shift from a serial search to a

parallel search28,29 whose speed is largely insensitive to

the number of different colors. A similar serial-to-parallel

shift characterizes search for matching luminosities, but

much larger differences are needed to support a parallel

search for luminosities.28 In sum, the optimization of a

color scale for use in categorization depends upon the

facilitation of visual search for the scale colors, which in

turn depends upon the discriminability of the colors.

While scales of highly-discriminable hues are well-

suited to categorical coding, the addition of lightness dif-

ferences need not impede their effectiveness, since light-

ness variation does not interfere with the visual search for

colors.9,30 Thus, lightness variation added to a multihue

scale should not interfere with its effectiveness as a dual-

use scale.

GENERATING ORDINAL SCALES

Most systematic approaches to generating ordinal color

scales involve tracing a line or curve in a color

space.2,12,31 This seems reasonable since most ordinal

scales are defined by a linear trend in luminosity and

since color spaces generally include a dimension to repre-

sent luminosity. By convention the luminosity dimension

is usually the vertical axis, while the two horizontal axes

represent hue. Thus, a vertical line may be used for

selecting colors in a single-hue scale with progressive

luminosities, while an upward spiral turns this into a mul-

tihue scale. Also, when the color space is perceptually

uniform, equal vertical distances between colors on the

curve represent equal perceived lightness differences,

allowing the scale to map accurately to the quantities

being represented.

For the purposes of creating a dual-use scale, we are

concerned with the possibility of adding multicoloration

to a lightness scale. In an effort to reconcile conflicting

evidence as to whether hue variation enhances or inter-

feres with the representation of quantity in a linear-lumi-

nosity scale, Spence et al.2 introduced the hypothesis that

an effective ordinal scale must be perceptually linear.

Specifically, ‘‘: : : for a coding assignment to be PL, it

must be possible to form an additive weighted combina-

tion of the Cartesian coordinates of each color in percep-

tual space such that the combination correlates maximally

with a linear sequence of numbers’’ (p. 397). Perceptual

linearity is only possible if luminosity is more highly

weighted than the two hue dimensions.

Spence et al. offered empirical support for the superior-

ity of perceptually-linear (PL) scales over nonlinear
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multicolored scales with human subjects tested on quanti-

tative tasks. The authors’ PL scales consisted of colors

equidistant on vertical curves in the perceptually-uniform

Munsell and CIELUV color spaces. Importantly, they pro-

vided evidence that a multicolored PL scale (specifically,

the HSB scale in Fig. 1) is generally as effective as a

monochrome PL scale in supporting quantitative tasks.

While participants performed relative comparisons more

slowly on the multicolored PL scale than on the mono-

chrome scale, they were faster on the multicolored scale

than the monochrome scale on a maximum/minimum

task. The two PL scales did not differ in accuracy on ei-

ther task. These findings suggest that multicolored light-

ness scales conforming to the PL principle will be effec-

tive for relative comparison tasks.

However the Perceptual-linearity hypothesis, like other

curve-tracing approaches to scale construction, would

appear to bode ill for the possibility of creating a multi-

hue scale that is effective for categorical identification as

well as relative comparison. Effective categorical coding

depends on the discriminability of the colors in a

scale,26,28 but adjacent colors on a curve are similar to

each other in both hue and luminosity (for examples, see

HSB and Gray scales in Fig. 1). What is more, linearity

can defeat the serial-to-parallel shift in search strategy

that otherwise results from increased discriminability, and

so nonlinearity is preferable for categorical codes, in con-

trast to ordinal codes.32,33 The low discriminability of ad-

jacent colors may account for the poor performance

afforded by lightness scales on categorical identification

tasks.5,6 The experiment reported here evaluates an alter-

native to the Perceptual-linearity hypothesis; we hypothe-

size that a scale with ordered luminosities but colors that

are otherwise maximally discriminable and unordered can

be effective for both absolute and relative quantification

tasks.

GENERATING CATEGORICAL SCALES

The chief requirement for an effective categorical scale is

that the colors be highly discriminable. If a perceptually

uniform color space is used, then a geometric approach

may be applied to selecting a highly-discriminable set of

colors. Thus, Healey34 described a method for generating

color scales by drawing the largest possible circle on the

hue dimensions (in this case, uv in CIELUV space) within

the gamut of the display device, while keep luminosity

constant. The circle is then subdivided into the desired

number of equal-sized arcs and rotated to satisfy other

considerations such as color category memberships. Ex-

perimental subjects identified targets rapidly with scales

up to seven colors in size.

In the case of nonuniform color spaces, distances must

be computed independently for each pair of colors consid-

ered and so the only way to locate the most discriminable

color set is by performing a search through the color

space. This search space is very large and an exhaustive

search of all possible scales within this space is NP-com-

plete.11 Thus, a heuristic search, rather than an exhaustive

search, is typically performed. The first such algorithm

was proposed by Carter and Carter.18,35 Later, Campadelli

et al.36 proposed a neural network algorithm for selecting

a high-contrast set of colors. This algorithm required pa-

rameter tuning and converged on a solution only 90% of

the time. Campadelli et al.11,37 then proposed an algo-

rithm that did not suffer from those limitations and the

color scales it produced were found to be superior to

those produced by Carter and Carter’s algorithm in terms

of the sizes of the color differences within the scales. No

empirical evaluation was conducted with human users.

To select a set of k colors Vk, Campadelli et al.’s11

algorithm first randomly selects an initial set of k colors

from the search space of n colors. Then, for each pair of

colors i and j, such that i [ Vk and j 62 Vk, evaluate

A ¼
X

l 6¼i;l 6¼j

1

Da
il

(1)

B ¼
X

l 6¼j;l 6¼i

1

Da
jl

(2)

where Dab is the distance between colors a and b. If A .
B, then substitute j for i in Vk. Repeat for each i [ Vk and

j =2 Vk. The final Vk is output.

The algorithm runs in time polynomial with respect to

the size of the input n. a is set to 90. The algorithm is

repeated 10 times, each with a different randomly-selected

initial set, and the resulting color set with the greatest

minimum distance among all the possible pairs of its col-

ors is selected as the output.

PROPOSAL FOR GENERATING HYBRID

ORDINAL-CATEGORICAL SCALES

We sought to compute color scales ordered by k levels of

lightness. Within each lightness level, colors are selected

to be maximally distinct from colors in other levels.

We adapted Campadelli et al.’s11 algorithm as the basis

for generating a scale that is maximally discriminable

within the constraints imposed by a lightness ordering.

Whereas their algorithm considers each color as a candi-

date for each position in the scale, ours assigns a separate

search space to each scale position. Each position’s search

space is defined by a precomputed lightness and satura-

tion. Thus, before search, the algorithm sorts the colors in

the larger color space into the separate search spaces for

each scale position; many colors do not qualify for inclu-

sion in any of the spaces.

The main hurdle we encountered was to find a way to

assign lightness values to the scale colors such that all

colors would be clearly discriminable with regard to light-

ness. Luminosity was computed according to Fairchild

and Pirrotta’s38 L** adjustment to the L* metric, designed

to counteract the Helmholtz-Kohlrausch effect whereby
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color affects perceived luminosity. Surprisingly, we found

that equal intervals of L** were not perceptually equal in

the context of the highly discriminable sets of color our

algorithm produced. We found that applying Weber’s

function to L** also failed to produce the desired results.

Finally, we found that power functions produced the best

lightness discriminability and adopted a function found by

Whittle39 to characterize perceived lightness in cases

where the ‘‘crispening effect’’ of background color on

perceived lightness does not apply. The crispening effect

is prevented in the context of the experiment to be

reported, as in many practical applications, because colors

within the visualizations have multicolored backgrounds

and legend colors have thin black outlines.39 We believe

that other power functions40 could serve equally well for

our algorithm and that more research will be needed to

determine the optimal luminosity function. In addition,

future research will probably produce further improve-

ments to the L* luminosity measure in addition to that

provided by the L** adjustment.41

A further question was whether differences in lightness

should be supplemented by differences in saturation. Lev-

kowitz and Herman23 recommended that saturation be ei-

ther directly or inversely related to luminosity. However,

since saturation differences may interfere with the percep-

tion of lightness differences,38,42 we tested two variants of

the algorithm, one in which saturation varied, following

Whittle’s function, in inverse relation to lightness, and

another in which saturation was held constant. Further, as

we found that high saturations tended to obscure luminos-

ity differences,42 we did not use highly-saturated colors.

The Motley Algorithm

The Motley algorithm may be outlined as follows.

Before the execution of the algorithm, the space of colors

must be generated. The algorithm proper consists of two

major steps. In Step 1, the search space for each position

in the color scale is generated. This step is primarily con-

cerned with ensuring that the resultant scale colors are or-

dered and discriminable by lightness, but also controls

saturation. Step 2 consists of a search through these color

spaces and is primarily intended to maximize—within the

constraints on each search space’s luminosity and satura-

tion—the color discriminability of the scale.

Step 0. Constructing the color space. To increase the effi-

ciency of the algorithm (i.e., Steps 1 and 2), the color

space is computed in advance and cached. The colors

are defined by a modified CIELAB representation,38

with L**, a*, and b* dimensions divided into 50 equal-

sized intervals.

Step 1. Generating the search spaces for each position. k
search spaces are generated for each of the k ordinal

positions in a scale consisting of k colors. Each search

space is defined by a distinct lightness, and sometimes

by a distinct saturation as well, as described in the fol-

lowing paragraphs. Colors at the ends of the scale may

be prespecified, in which case the specified color is the

only color in its search space. In the work reported

here, k ¼ 7 ordered positions, with position 1 set to

black and position 7 is set to white.

For each position, a target lightness and target satura-

tion are computed. The target lightness L is determined

by Whittle’s39 function:

L ¼ 5:27L��0:41 � 2:66 (3)

The target saturation defining each search space is con-

strained in one of two ways in the following variants of

the algorithm:

a. Whittle variant: Saturations are determined by Whit-

tle’s function [Eq. (3)], but varying in the opposite

direction to the scale’s lightness. Since both ends of a

lightness scale have low saturation,23 Whittle’s func-

tion is applied only to the interior of the scale. Also,

Whittle’s function is scaled to a maximum saturation

of 60, since it can be harder to discriminate the light-

ness of highly saturated colors.42

b. Constant variant: Saturation is set to a constant value

s. We set s ¼ 45, a relatively low saturation, as in the

Whittle variant.

A candidate color is considered for admission into the

search space whose target lightness and saturation are

closest to its own. Focusing first on lightness, candidate

color c is admitted into the search space for scale position

j if its lightness Lc falls within 1/x of the difference

between target lightness Lj and the target lightness of the

closer of the two adjacent positions—i.e., either Lj21 or

Ljþ1, specifically Lj21 if Lc \ Lj or Ljþ1 if Lc [ Lj. Thus,
if Lc \ Lj, c is admitted if the following is true:

��Lj � Lc
�� < 1

x

��Lj � Lj�1

�� (4)

For example, suppose x ¼ 10, Lj ¼ 30, Lc ¼ 29, and

Lj21 ¼10, then the algorithm would accept c into the

search space of position j.

The selection of the value of x in Eq. (4) involves a

trade-off between the demands of luminosity contrast and

overall color discriminability. The higher the selected

value of x, the tighter the fit between the lightness of the

colors in position j’s search space and j’s target lightness,

and thus the greater the lightness contrast between the

ultimately-selected color and its neighbors in the scale.

But since a higher x represents a stricter criterion for

admission to the search space, the consequence is a reduc-

tion in the size of the search space. Since the subsequent

search in Step 2, is designed to maximize the discrimina-

bility of the colors in the scale, the reduction in the search

spaces tends to reduce the discriminability of the colors

in the scale.

Another danger of an overly strict criterion x is that it

can happen that no colors will be found for some of the
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scale positions. In the event that the algorithm is not able

to find any colors for one or more of the search spaces,

Step 1 is repeated with the value of x reduced to half its

previous value, thus loosening the criterion for entry into

the search spaces, and with only the empty search spaces

considered as candidates. This process iterates until all

the color spaces are nonempty.

Identical considerations apply to the determination of

whether a candidate color’s saturation meets the require-

ments of a particular search space.

In the work reported here, x was set to 20 and only a sin-

gle iteration of Step 1 was required to find colors for each

of the search spaces, for both variants of the algorithm.

Step 2. Searching the color spaces. Before the search, an

initial color scale is constructed by randomly selecting

one color from each positional color space. This scale,

referred to as the Current Scale, is progressively modi-

fied during the search. For the remainder of Step 2, the

following substep is repeated until all the search spaces

are empty:

Step 2a. Select and evaluate a candidate color. Randomly

select a nonempty color space p. From this space, ran-

domly select and remove a candidate color j. Compare

color j to the color i currently occupying position p in

the Current Scale. If color j is determined to enhance

the discriminability of the Current Scale, according to

Eqs. (1) and (2), then color j is substituted for color i

in the Current Scale. Otherwise color j is not consid-

ered further. The CIE DE2000 metric43 served as the

measure of color distance D in our implementation of

Eqs. (1) and (2).

Once the search process terminates, the Current Scale

is output.

The algorithm, i.e. Steps 1 and 2, is repeated 10 times.

From the 10 scales produced, the scale with the highest

minimum pairwise color distance is selected as the final

output; ties are broken by selecting the scale with the

highest average pairwise color distance. Pairwise color

distance is the set of distances between each pair of col-

ors in the scale; in a seven-color scale, there are 21 pair-

wise comparisons.

The choices of CIELAB color space and of the CIE

DE2000 distance metric are not essential elements of the

algorithm. This color space and distance metric are espe-

cially suited to small color differences, but the scales

being produced include both small and large color differ-

ences. CIE DE2000 is one of the most advanced color

difference metrics in use.43 However, a different color

space and distance metric could be substituted for these.

EXPERIMENT

The Motley algorithm was evaluated by an experimental

comparison of scales produced by the algorithm, ordered

by lightness but unordered by hue, with both multihue

scales, which are not ordered by lightness or hue, and per-

ceptually-linear scales, ordered by both lightness and hue.

The scales were tested on both absolute value identifica-

tion and relative comparison tasks. Previous research has

shown that unordered multihue scales are superior for

value identification,4–6 while perceptually-linear scales are

superior for relative comparison tasks.2,4–6 We evaluated

scales created by the two Motley variants, the Whittle

based saturation variant and the Constant saturation vari-

ant. Our hypothesis was that Motley scales would be as

effective as unordered multihue scales on identification

tasks and as effective as the perceptually-linear scales on

relative comparison tasks.

Method

Participants. Thirty undergraduate psychology students

from George Mason University participated in this study

for partial course credit. Participants were determined to

be color normal with the Pseudoisochromatic Plates Ishi-

hara Compatible (PIPIC) 24-plate test.44 All participants

had normal or correct-to-normal vision. The experiment

lasted �45 minutes. Subjects were assigned randomly and

equally to either the identification or comparison condi-

tion.

Materials. A stimulus consisted of a 10 3 10 grid and

a legend (see Fig. 1). Each cell on the color grid sub-

tended a 2.548 visual angle. The colors on each stimulus

were taken from a different seven-color scale. Each color

was represented approximately equally in the grid, with

14 instances of five of the colors and 15 instances of the

remaining two colors (which two was determined ran-

domly). To the right of the grid was the legend, display-

ing the scale colors and their associated numbers, listed

vertically downward from 1 to 7. Each color cell on the

legend subtended 1.278 of visual angle and each number

subtended 1.698.
Three scale types were used—Unordered, Perceptually-

linear, and Motley—with two instantiations of each type.

The two multicolored Unordered scales, Rainbow and

Weather, were not ordered by either lightness or hue. The

two Perceptually-linear scales, the monochrome Grayscale

and the multicolored HSB (for Hue-Saturation-Lightness

in Munsell space), were both ordered by lightness and

HSB was ordered by hue as well, in accordance with

Spence et al.’s2 Perceptual Linearity hypothesis. The two

Motley instances were Whittle and Constant, according to

whether the color saturations were determined by Whit-

tle’s function or were constant. They were ordered by

lightness, but not ordered by hue. Rainbow was con-

structed by using the built-in ‘‘rainbow’’ set of hues from

the R statistical computing environment.45 The Weather

scale came from the Washington Post daily weather map

(May 2003). The Grayscale scale was created by varying

luminance in equal steps from black to white. The HSB

scale, created by Spence et al.,2 varied linearly in Munsell

value (brightness), hue, and chroma (saturation), with

value and chroma varying in opposite directions. sRGB

and CIELAB values of the colors in each scale are shown
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in Table I. All stimuli were created using R.45 The experi-

ment was presented using E-Prime.46

Procedure for Identification Condition. On each identi-

fication task trial, an ‘‘X’’ appeared in one cell of the grid

to mark the target color to be identified. Both the location

of the target and the arrangement of colors on the grid

were determined randomly on each trial. Each of a scale’s

seven colors was the target color on six trials, resulting in

42 trials per scale, or a total 252 trials for all 6 scales.

Participants were tested individually and were seated

�43 cm from the computer monitor. To minimize search

time, the location of the target ‘‘X’’ was presented on a

blank screen before each trial. After the participant hit the

space bar, the graph was presented. The participant’s task

was to determine the numerical value associated with the

target color, and then enter the appropriate value (1–7) on

the keypad. Response times were measured from the time

the graph was presented until the participant responded.

After a response was made, the next trial started. Stimuli

were presented in block-randomized order, blocked by

scale. Scale blocks were further blocked by scale type

(Unordered, Perceptually-linear, Motley); the order of two

scale blocks within a scale type and the order of the three

scale type blocks were randomized.

Before the blocks for a given scale type, the partici-

pants were given brief training with only three colors and

a 3-by-3 grid: (blue, green, red) for Unordered [RGB val-

ues (0 0 255), (0 255 0), and (255 0 0), respectively],

green-scale for Perceptually-linear [RGB values (147 226

125), (75 125 68), (26 60 28)], and (blue, green, red) for

Motley (RGB values (130 18 17), (145 181 130), and

(192 241 254), respectively). Next they were introduced

to the legends for the two scales in the block, followed

by the test trials.

Procedure for Comparison Condition. For each of the

21 possible pairwise comparisons among the seven colors

in a scale, two stimuli were generated, each one having

an ‘‘X’’ and an ‘‘O’’ on the grid. On one of these two

stimuli the ‘‘X’’ had the greater value and on the other

stimulus the ‘‘O’’ had the greater value as determined by

the legend numbers. The locations of both targets were

determined randomly, and each participant received a dif-

ferent random set of graphs. Thus, a total of 42 (21 pair-

wise comparisons 3 2) different graphs were created for

each scale, or a total of 252 trials.

Participants were tested individually and were seated

�43 cm from the computer monitor. To minimize search

time, the location of both targets (the ‘‘X’’ and the ‘‘O’’)

was presented on a blank screen before each trial. After

the subject hit the space bar, the graph was presented. The

participants’ task was to determine whether the value of

the ‘‘X’’ color or the value of the ‘‘O’’ color was greater

on the legend, and then respond by pressing the ‘‘z’’ or the

‘‘/’’ key (labeled with an ‘‘X’’ or an ‘‘O’’ respectively). Af-

ter a response was made, the next trial started.

Block randomization and training were similar to those

in the identification task, with necessary modifications

appropriate to the comparison task.

TABLE I. Colors in experimental scales in sRGB and
CIELAB notation.

R G B L* a* b*

Motley scales

Whittle

255 255 255 100 0 0
192 241 254 92 214 212
239 189 220 82 22 28
207 161 124 70 14 26
58 139 95 52 234 16

162 17 87 36 58 0
0 0 0 0 0 0

Constant

255 255 255 100 0 0
86 250 248 90 244 212

251 172 244 80 38 224
222 138 101 66 30 34
77 132 57 50 230 34

142 49 102 36 44 210
0 0 0 0 0 0

Unordered scales

Rainbow

255 0 219 59 90 243
73 0 255 33 70 2106
0 146 255 59 21 264
0 255 146 89 270 37

73 255 0 89 273 82
255 219 0 89 1 87
255 0 0 54 81 70

Weather

255 255 255 100 0 0
173 216 230 84 212 212

0 0 205 23 58 295
0 255 0 88 279 81

144 238 144 87 243 36
255 192 203 84 24 4
255 0 0 54 81 70

Perceptually-linear scales

HSB

171 214 160 82 222 22
179 151 76 64 4 43
171 102 28 50 25 50
180 53 18 42 51 49
163 20 24 35 55 39
114 5 40 24 45 13
51 0 65 9 32 228

Grayscale

255 255 255 100 0 0
213 213 213 85 0 0
170 170 170 70 0 0
128 128 128 54 0 0
85 85 85 36 0 0
43 43 43 18 0 0
0 0 0 0 0 0
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Results

Accuracy, Response Time. Task by Scale Type analyzes

revealed significant Task 3 Scale Type interaction effects

for accuracy, F(2,56) ¼ 31.77, P \ 0.001, and for

response time, F(2,56) ¼ 21.33, P \ 0.001. Given these

interaction effects, we will discuss results for identifica-

tion and comparison tasks separately. Data from one par-

ticipant on the Perceptually-linear scales were missing.

Identification Task. As can be seen in Figs. 2 and 3,

Motley scales performed similarly to Unordered scales

and both of these were superior to Perceptually-linear

scales on this task. Significant effects of Scale Type were

found both for accuracy, F(2,28) ¼ 58.85, P\ 0.001, and

for response time, F(2,28) ¼ 22.93, P \ 0.001. Tukey

HSD pairwise comparisons confirmed that on both varia-

bles, Motley and Unordered scales were not significantly

different from each other and both were faster and more

accurate than Perceptually-linear scales (P\ 0.05).

Further analyzes were conducted on the six scales,

taken singly. Comparisons between the two Motley scales

(Whittle saturation and Constant saturation) showed them

to function equivalently in terms of both accuracy and ef-

ficiency, suggesting that the respective variants of the

Motley algorithm they represent are equally effective.

The Motley variants were each compared to the HSB

scale, developed by Spence et al.,2 to assess the effects of

Motley’s nonlinear hues compared to HSB’s linear hues,

determined by the perceptual-linear hypothesis. Compari-

sons between the two Motley scales and HSB mirrored

the differences between their respective scale types with

respect to response time and accuracy, with the Motley

scales being more accurate and faster than the HSB scale,

except that the Constant scale was only marginally (P \
0.07) more accurate than the HSB scale.

Comparison Task. As shown in Figs. 4 and 5, the Motley

scales performed equivalently to the Perceptually-linear

scales and generally better than the Unordered scales on

this task. Again, significant effects of Scale Type were

found for both accuracy, F(2,28) ¼ 3.58, P \ 0.05, and

for response time, F(2,28) ¼ 9.56, P \ 0.001. Tukey

HSD pairwise comparisons for response time showed per-

formance on Motley scales to be equivalent to that on

Perceptually-linear scales and both of these to be superior

to Unordered scales (P\ 0.05).

FIG. 2. Accuracy on Identification task (Error bars repre-
sent 95% confidence intervals.).

FIG. 3. Response time on Identification task (Error bars
represent 95% confidence intervals.).

FIG. 4. Accuracy on Comparison task (Error bars repre-
sent 95% confidence intervals.).

FIG. 5. Response Time on Comparison task (Error bars
represent 95% confidence intervals.).
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In terms of accuracy, none of the pairwise accuracy

comparisons were significant; the Perceptually-linear

scales were only marginally more accurate than Unor-

dered scales (P \ 0.07). The absence of differences was

likely a ceiling effect given the high levels of accuracy in

all three conditions. Similar ceiling effects in the accura-

cies of Perceptually-linear and Unordered scales on the

comparison task have been found by some researchers,47

but not by others.4

Analyzes examining the 6 scales separately again found

that the two Motley scales did not differ. Comparisons

between the Motley scales and the HSB scale mirrored

the differences between their respective Scale Types,

being similar to each other with respect to both response

time and accuracy.

Discussion

The findings replicated previous evidence4–6 concern-

ing the traditionally-used multihue and perceptually-lin-

ear scales, namely that multihue scales are superior on

absolute value identification tasks and perceptually-linear

scales are superior on relative comparison tasks. The

Motley algorithm successfully integrated the strengths of

each of the two traditional scale types. Specifically, the

scales produced by the algorithm elicited comparable

performance to the multihue scales on the identification

task and to the perceptually-linear scales on the compari-

son task, as well as superior performance to the percep-

tually-linear scales on the identification task and to the

multihue scales on the comparison task, with the excep-

tion that accuracy was uniformly high on the comparison

task.

The results do not lend support to an advantage of ei-

ther of the Motley variants, Constant saturation or Whit-

tle-based saturation, over the other. Thus, ordering by sat-

uration in the Whittle variant does not appear to reinforce

the effects of the lightness ordering. We suspect that for

larger scales, of 10 or more colors, constructed with

Whittle-based saturations, the lighter colors may be so

desaturated as to be more difficult to discriminate. Further

research is needed to resolve this question.

The experiment shed light on the Perceptual Linearity

hypothesis, originally proposed to provide conditions for

adding variegated coloration to lightness scales intended

for relative comparison tasks.2 The results cast doubt on

the hypothesis that perceptual linearity is a necessary

requirement for such scales. On the relative comparison

task, neither of the Perceptually-linear scales was superior

to the Motley-generated scales, which were unordered in

hue.

With regard to the identification task, the HSB scale

did improve accuracy relative to Grayscale (Tukey HSD,

P\ 0.05), whether that was due to the linearity of HSB’s

hues or simply to its multicoloration. However, the find-

ing that people performed identifications more slowly

with the HSB scale than with the Motley scales is consist-

ent with the alternate hypothesis, that nonlinearity in hue

is preferable for efficient identification.32,33 However,

since the Motley scales are highly discriminable and since

highly discriminable color sets are nonlinear, the results

do not clearly differentiate between the effects of nonli-

nearity and discriminability.

GENERAL DISCUSSION

We have provided evidence that a single color scale can

be used effectively in both value identification and rela-

tive comparison tasks. We have also proposed an algo-

rithm, Motley, that constructs such dual-use scales by pro-

moting hue and lightness discriminability and a lightness

ordering. The algorithm consists of two steps. In the first

step, constraints on lightness and saturation are defined

for each ordinal position in the scale, and search spaces

are constructed for each position conforming to those con-

straints. The purpose of this step is to ensure that the

scale colors will be ordered and discriminable by light-

ness. The second step, involving heuristic search within

the search spaces is designed to maximize the color dis-

criminability of the scale, adapting an algorithm proposed

by Campadelli et al.11

The experimental evaluation of Motley with human

participants provided support for the hypothesis that its

scales incorporate the respective strengths of unordered

multicolored scales and ordered lightness scales, making

them well-suited for both absolute value identification and

relative comparison tasks. The scales support efficient rel-

ative comparisons between color-coded regions in a visu-

alization, as well as fast and accurate matching of a

region to the legend to extract absolute values.

Theoretical Implications

The success of Motley’s scales on quantitative tasks

calls into question the Perceptual Linearity hypothesis

concerning the conditions that allow multicoloration to

support the lightness representation of quantity.2 On the

relative comparison task, the type of task for which the

Perceptual Linearity hypothesis was designed, Motley’s

scales were equally effective even though they were not

perceptual linear with regard to hue. However, the ques-

tion the Perceptual Linearity hypothesis was introduced to

address remains unanswered, namely why color some-

times supports and sometimes impedes the lightness rep-

resentation of quantity. Also, while perceptual linearity

may not be a necessary condition for relative comparison,

the PL scales were no worse than the Motley scales on

the relative comparison task and, like the Motley scales,

were superior to the Unordered scales in response times.

Finally, on the identification task, a task for which the

Perceptually Linearity hypothesis was not designed, the

PL scales were inferior to both the Unordered scales and

the Motley scales.

Our results may also be viewed in terms of other

research concerning the extent to which color and light-

ness support or interfere with one another on various

tasks. On the relative comparison task, the addition of
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color to lightness scales, as in the HSB or Motley scales,

neither improved nor harmed performance relative to the

monochrome grayscale.2 On the identification task, the

superior accuracy on the multicolored HSB and Motley

scales relative to the grayscale suggests that the addition

of color to lightness scales improves visual search.48 This

may reflect a more general phenomenon whereby varia-

tions in independent features of color facilitate visual

search.49

Fairchild and Pirrotta’s38 L** metric improved upon

the CIELAB L* metric with the goal of predicting the

perceived lightness of chromatic objects. Our informal ob-

servation that equal intervals of L** do not correspond to

equal differences in perceived lightness among highly dis-

similar colors received only indirect support in our experi-

ment. Scales produced by the Motley algorithm, using an

exponential function of L** to determine lightness differ-

ences, served as well as for lightness comparisons as a

perceptually-linear scale with lightness values equally

spaced in Munsell space. Clearly, more systematic work

is needed to explore the hypothesized phenomenon, for

instance research comparing scales produced by various

functions of L**, both linear and nonlinear, in different

chromatic contexts.

It is noteworthy that the Motley algorithm appears to

have the serendipitous effect of producing sets of colors

belonging to distinct color categories. The colors in the

two Motley scales in Fig. 1 appear to belong to the cate-

gories white, cyan, pink, brown, green, purple, and black.

The question of whether color category influences visual

search and whether these categories are verbally mediated

has been the subject of ongoing debate.27,50 In any case,

the colors in the PL HSB scale in Fig. 1 are clearly not

differentiable on the basis of category; as characterized

by Munsell hue, the sequence is green, green-yellow, yel-

low, yellow-red, red, red-purple, and purple. More gener-

ally, this is what one would expect from scales that are

ordered by hue, as multicolored ordinal scales often are.

Motley’s scales, in contrast, are expressly unordered by

hue. The extent to which color category contributes to the

success of Motley scales is a subject for further research.

Practical Implications

Hybrid scales, such as those produced by Motley, with

ordered lightness and highly-discriminable unordered col-

ors, should introduce new alternatives into the choice of

color codes for practical applications. The Motley scales

were as efficient and accurate as the traditionally-used

lightness scales on relative comparison tasks and as effi-

cient and accurate as the traditionally-used multicolored

scales on absolute value tasks. Thus, the sort of compro-

mises of accuracy versus efficiency or of relative compar-

ison versus absolute identification performance described

in the introduction for the design of school atlases need

not always be necessary. Of course, other considerations

will still enter into the choice of color scales, including

conventional color symbology and color-size illusions.51

We do not claim that Motley is the only or best algo-

rithm for producing dual-use color scales. It does repre-

sent a ‘‘proof of concept’’ for the idea that ordered light-

ness together with highly discriminable—thus unor-

dered—hues can offer a solution to the problem of

producing color scales that are useful for both relative

comparison and absolute value identification tasks.
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